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The quantum logical way of simulating quantum systems by automata is con- 
sidered for two-particle systems. As an example, the EPR experiment with two 
spin-l/2 particles is considered and the violation of Bell's inequalities is demon- 
strated. Some methodological implications of the proposed approach are 
discussed. 

1. I N T R O D U C T I O N  

In our previous paper  (Grib and Zapatrin,  1990) we described some 
simple one-particle systems by means of quantum logical non-Boolean 
lattices and graphs associated with them. Here we do the same for two- 
particle systems. 

Two-particle systems are interesting because Jauch (1968) expressed a 
doubt about  a "realistic" quantum logical interpretation applied to two 
particles. Following Finkelstein (1963), we shall say that properties of  
quantum systems do "exist ," but that the logic differs from the usual human 
Boolean one. Then Jauch has put the question: what happens when we 
unite two quantum particles into a system? I f  the properties of  individual 
particles "existed" before we united them, they must still "exist"  in the 
system. However,  we know that due to the complementari ty of  the whole 
and its parts, if the properties of  the whole are observed as "existing," then 
we cannot say the same about  its parts. And if the properties of  the parts 
are supposed to exist, one comes to the validity of  Bell's inequalities, which 
are broken for quantum systems (Grib, 1984). 

In this paper  we give the answer to Jauch's  question. The point is that 
when we unite two particles into one quantum system we must add new 
elements to the property lattice, namely the questions corresponding to 
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eigenstates of the permutation operator. This operator is nonlocal and it 
does not commute with local observables for parts of the system. Noncom- 
mutativity leads in turn to nondistributivity of the property lattice: properties 
of parts do exist in the system, but this is "nondistributive existence." Local 
observables have these OR those values AND nonlocal observables corre- 
sponding to the permutation operator have these OR those values; however, 
OR and AND are nondistributive: a ^ (b v c) @ (a ^ b) v (a ^ c). 

In Grib and Zapatrin (1990) we have shown how one can simulate 
some simple quantum systems by classical automata with non-Boolean 
logics. This possibility of simulating quantum systems by classical automata 
described by graphs is important for two reasons. The first one is that it 
gives us a way tO construct quantum computers--automata  composed from 
classical elements but working analogously to quantum systems due to 
quantum logics. The second reason is that it has the profound meaning of 
showing why we can speak about quantum objects in terms of  classical 
experiments. In some sense it corresponds to Lfidwig's (1989) extreme point 
of  view that "atoms do not exist," and that only classical measuring apparata 
do really "exist," and "quantum objects" are merely a language describing 
relations between classical bodies and logics of these relations. 

Nevertheless, we consider Lfidwig's interpretation extreme because 
classical bodies "consist" of quantum objects, but not the opposite, and 
macroscopic quantum mechanics gives us reason to believe that there are 
no purely classical objects. 

After constructing graphs and property lattices for two-particle systems 
we give the rule for defining the wave function in terms of weights on 
graphs. Then we show how Bell's inequalities can be violated on graphs. 
This yields an example of Bell's inequalities breaking for classical systems 
with non-Boolean logics. 

As we described in our previous paper, non-Boolean logics for classical 
systems can arise in situations when one uses negative logics, namely 
checking the state of a system through a negative answer on the opposite 
question. Such an approach is also developed in linear logics operating with 
facts which are properties satisfying the double negation rule: A is a fact 
if A is NOT NOT A. 

At the end of the paper we discuss the problem of wave packet reduction 
for a two-particle system which as we think is connected with the Boolean 
nature of consciousness. Properties described by non-Boolean lattices do 
not correspond to events in Minkowski space-time and there is no usual 
probability attached to them. It is only due to "booleization" of the lattice 
done by an observer that they become events. This booleization is done by 
means of time, namely the observer can check values of noncommuting 
observables by measuring them at different moments of time. So an observer 
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must move in time in order to apprehend through his Boolean consciousness 
the non-Boolean properties of a quantum system. We think this can help 
explain why we all move in time. 

2. PRODUCT GRAPHS AND COUPLED SYSTEMS 

First we briefly recall what we mean by the graph description of a 
quantum system S associated with Hilbert space Y(. We select some proper- 
ties (closed subspaces of  Ys and associate with them vertices of a graph 
G. The edges of the graph G connect only the vertices associated with 
nonorthogonal subspaces. The obtained graph G is called the graph of  the 
system S. 

Now consider two quantum systems Sa and $2 associated with Hilbert 
spaces ~ and W2 and graphs G~ and G2, respectively. The Hilbert space 
of the compound system S is the tensor product  Y( = Yt~l | Y(2. Building 
the graphs G~ and G2, we selected some subspaces in 0s and Y(2. All 
pairwise products of those subspaces generate the collection of subspaces 
of  Y(. To each subspace of  this collection we associate a vertex of  the product 
graph G; therefore, we define the set of vertices of the product  graph G as 
the set of all ordered pairs of vertices of Ga and G2. The orthogonality on 
the set of such pairs is inherited from the lattice ~(Ys namely for i, 
i ' c  3~(Ys and k, k ' c  5r 

Def 
( i ,k)•  or k •  

Thus, the edges of the product  graph connect two vertices (i, k) and 
(i', k') if both pairs of vertices i, i' of  G1 and k, k' of  G2 are connected by 
edges of  G1 and G2, respectively. 

Now consider two spin- l /2  particles and restrict possible spin measure- 
ments on the (xz) plane. This situation is described by the graphs of  Figure 
1 (Finkelstein and Finkelstein, 1982). Their property lattices are the simplest 
nondistributive ortholattices M,  (see Figure 2). 

The product  graph G = G1 | G2 has 4 • 4 = 16 vertices of the form ik, 
where i = 1, 2, 3, 4 runs over all vertices of  G1 and k = 1, 2, 3, 4 runs over 

I 2 = [ 

Fig. 1. The simplest graph with quantum property lattices. 
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Lz= 

Fig. 2. Property lattices of G 1 and G 2. 

all vertices of  G2. In accordance with the above definition, the graph G 
has the form given in Figure 3. 

When a system S is represented by its graph G the (experimentally 
distinguishable) states of  S are described by endowing the vertices of  G 
with probabili ty weights (interpreted as the possibility of  occurrence of 
corresponding property).  Let S be initially in a state A = {ai} described by 
a collection {ai} of  probabil i ty weights on the vertices of  G. Then the 
probabili ty of  finding S in a state B = {bp} is calculated by the transition 
probabili ty formula [for a special case see Grib and Zapatrin (1990)] 

PAn = aiTP~ bp + K (2.1) 

where summation by repeated indices is performed over all vertices of  G. 
Here T p is a symmetric matrix and K is a constant, both depending only 
on the form of the graph G. Denote the set of  all states on G by 5g(G). 

Here we consider the graph G (Figure 3) whose vertices are labeled 
by double indices. Since G is a product  graph, we can consider two kinds 
of  states. Factorizable states are represented by collections of  vertex weights 
C~k that can be represented as pairwise products of  weights on Gi and G2. 

t~ ~g t 3  Jq t {  

3 (  q 3 L  

t t  t 2  13 ~t t . t  

Fig. 3. The planar development of the product graph G (vertices labeled by the same indices 
are identical). 
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In other words, for {cik} a ~(G1 @ 62) 

D e f  

( {Cik} is factorizable) <=> 3{ai} ~ ~ (  G1) (2.2) 

3{b~} ~ ~ (  G2)[c,k = a,bk 

If (2.2) does not hold for a state c~k, it is called nonfactorizable. 
The transition probability formula (2.1) for the graph G has the form 

Pcu = c,k T ~ dpq + K (2.3) 

where K---5/4,  and 

Pq- I~  if p = i a n d q = k  
T i k -  if p • 1 7 7  

- 1 / 4  otherwise 

[for graphs G1, G2 from Figure 1, p • i means p - i = 2 (mod 4)]. 
The values of T pq and K can be obtained from the requirement of  

correspondence with the traditional quantum mechanical results. In general, 
given the matrices Tf ,  T~ and the constants kl, k2 for the graphs GI and 
(72, the matrix Tf  q and the constant K for the product  graph G = G~ | G2 
can be obtained from: (a) The requirement that both T~V~ and K do not 
depend on the values of  weights (i.e., they are really constants); (b) the 
assumption that the two systems S1 and $2 are independent and thus for 
any pair of  factorizable states Cik = a i b  k and dpq = t is  q the transition probabil- 
ity is the product  

Pcv = PArPBs 

where C = { e l k } , . . .  , S = {Sq}  

Now construct the property lattice L(G) corresponding to the graph 
G (Figure 3). The maximal element I ~ L(G) is the 16-element set V(G) 
of  all vertices of the graph. The upper row has 16 elements of the form 
{i*, *k}, where * runs over 1, 2, 3, 4. Each element of  the upper row of  
L(G) is a seven-element subset of  the set V(G) of  all vertices of  G. The 
next row downward consists of  elements of three kinds: {i*} and {*k}, 
which are four-element subsets of  V(G), and {ik, Ira} ( i# l ,  k # m ) ,  the 
two-element subsets. The direct calculation shows that there are four ele- 
ments of  the form {i*} and {*k} and 72 elements of the form {ik, lm} 
(i ~ l, k # m). The next row is the lowest. It consists of 16 elements which 
are one-element subsets {ik} corresponding to each vertex ikc V(G). At 
the bottom of  L(G) is the void set 0 .  Thus, we have completely described 
the property lattice L(G) as the lattice of subsets of  V(G) partially ordered 
by set-theoretic inclusion. 

The Hasse diagram of the lattice L(G) consisting of 1 + 1 6 +8 0 +  16+ 
1=114  elements is too complicated for typographical representation. 
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However, its graph representation is unambiguous. A mathematical treat- 
ment of questions concerning the graph representation of ortholattices is 
given in Zapatrin (1990a, b). 

3. NONLOCAL QUESTIONS IN THE LATTICE AND GRAPH 

The permutation operator has two eigenvalues: ~=1. To -1 corresponds 
the vector < q - I  in ~ :  < q - [  = 1/v~(e12-e21); and to +1 corresponds its 
orthogonal complement. 

First, we introduce into the graph G the new vertex corresponding to 
the following question for the system: is the wave function antisymmetric? 
The vertex q -  associated to this question is connected with other vertices 
of G according to the rule described in Section 2: two vertices are not 
connected by an arc if the subspaces associated to them are orthogonal; 
otherwise we draw an arc. Calculating directly the scalar products (q- lik> 
we obtain that ( q - )  is orthogonal only to vertices 11, 22, 33, and 44. Thus, 
the vertex q -  must be connected with all vertices of G except the above- 
mentioned ones. We can also introduce the vertex q+ associated with the 
subspace corresponding to +1. In this case we should connect q+ with all 
vertices except q - .  However, this vertex q+ will be redundant, namely the 
property lattice of this graph will be isomorphic to that of the graph H. 

The graph H obtained from G by adding the vertex q -  is shown in 
Figure 4. 

The property lattice L(H) can be constructed from L(G) described in 
Section 2 by adding two new elements. The first {q-} is an atom (placed 

Fig. 4. 

"~( '(Z '(3 4H 

The graph H. The old edges of G are omitted and only new ones are shown. 
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in the lowest row together with the {ik}). The other one, {11, 22, 33, 44}, 
is placed in the upper  row. Also, the vertex q -  must be added to two-element 
subsets of  the form {ik, ki} of the middle row. This completes the description 
of  the lattice L(H). 

4. BELL'S INEQUALITIES AND THEIR BREAKING IN TERMS 
OF GRAPHS 

Let X, Y, Z be some elementary questions, and X, Y, Z their negations 
considered for a graph G. An elementary question means checking that one 
is in a state described by a collection of vertex weights {aq}, where q runs 
over all vertices of  the graph. The negation of  the question {aq} means 
checking that one is in the state described by the collection {~q}, ~q = 1 - aq. 

Then consider a compound  system of  two identical objects which is 
prepared in such a way that if  we put one of  the questions X, Y, Z to the 
first object and the same question to the second one, we always obtain 
exactly one YES and one NO. One can also put different questions to the 
objects when some answer on the question X to the first object is obtained, 
we immediately know the answer on this question to the second object 
(namely, the opposite answer). Then one could ask about  the validity of  
Bell's inequality 

P( X1Y1) + P( X1Z1) ~ P( Y, Z1) 

However,  none of  the questions XIX1, XIZ1, and Y1Z1 can be put directly. 
So to convert Bell's inequality to measurable form, we equivalently have 

P( X, ?2) + P( X~22) >- P(Y~22) (4.1) 

where, for example,  P(X~ I"z) is the probabili ty to obtain YES for the 
question X to the first object and NO for the question Y t o  the second object. 

Now let both objects be described by the graph GI (G2) (Figure 1). 
This graph simulates spin measurements on a sp in- l /2  particle restricted 
on the (xz) plane. Consider three elementary questions. Let X = "Sx = 1/2?",  
Y = "S~ = 1/2?",  and Z = "Sz = 1/2?",  where a is an axis in the (xz) plane 
forming the angle a with the Z axis. These questions induce the following 
weights on the vertices 1, 2, 3, 4 of  the graph Ga (Grib and Zapatrin,  1990): 

X: xl=x3=l/2, x ~ = l ,  x4=O 

Y: Yl -- (1 +s in  a)/2, Y2 = (1 +COS o ~ ) / 2 ,  Y3 = (1 --sin a)/2, 
Y4 "~ (1 --COS a)/2 (4.2) 

Z :  z l = l ,  z 2 - - z 4 = l / 2 ,  z3=0 

For opposite questions we have ffl = 1 - x i ,  and so on. 
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As was proposed in Section 3, let our coupled system described by the 
graph G (Figure 3) be in the state {dpq}--the eigenstate for the value -1  
of the permutation operator. The state {dpq} is not an eigenstate for any 
question ik. Scalar products [ (q - [ ik ) [  2 yield 

q 

0 1/4 1/2 1/4 

1/4 0 1/4 1/2 

1/2 1/4 0 1/4 

1/4 1/2 1/4 0 

(4.3) 

Form the product questions occurring in (4.1). All are factorizable and 
are calculated as pairwise products. For example, the collection of weights 
associated with the question X~ Y2 is {c~k}, c~k = x~(1- Yk), where the values 
of x~ and yg are taken from (4.2). 

The collection of weights associated with three questions from (4.1) is 
substituted into (2.2) to get the values of transition probabilities, which in 
our case are equal to 

P(X, Y2) = (1 - c o s  a)/2 

P(X, Z2) = 1/2 

P(Y~Z2) = (1 + sin a)/2 

If a is such that 1 - c o s  a->sin a, the inequality (4.1) is violated. We 
emphasize that the demonstrated violation of Bell's inequalities is essentially 
caused by the nondistributivity of the property lattice. 

5. BOOLEIZATION THROUGH MEASUREMENT, 
THE ROLE OF CONSCIOUSNESS 

One of the fundamental problems in quantum theory is the problem 
of measurement. London and Bauer (1939) discussed the idea that its 
solution is due to the special property of consciousness--its introspection. 
Introspection means knowledge as unambiguous identification of one's state 
of mind and leads to wave packet reduction, so that probabilities appear. 
Here we develop this idea further. We connect introspection with the 
Boolean logic of mind. Thus, if one considers the system: particle+ 
apparatus + observer with mind, the wave packet reduction appears. This 
is because the  Boolean-minded observer (being part of a non-Boolean 
system) projects the whole on his Boolean structure, which possesses the 
usual probability calculus. So it is the discrepancy between the non-Boolean 
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structure of  the world and the Boolean nature of  mind that leads to wave 
packet reduction. 

The booleization (projection of  non-Boolean structure on its Boolean 
substructure) is made by means of time. For instance, one can have the 
idea that both time and movement in time are "invented" by the Boolean 
mind in order to grasp the non-Boolean nature of  the world as well as the 
body with which this mind is intimately connected. 

To understand this, consider as an example the system of  two spin- l /2  
particles and their spin projections on Szl and S=2 on the z axis only. 
Construct the non-Boolean lattice of this system introducing the elementary 
questions corresponding to the following vectors in ~ = ~1 | ~2 : 

(11 = el | el, (21 = el | e2 

(3[ = 1/,,/2(el | e2-e2  | el) (5.1) 

(41 = e2 @ ea, (51 = e2 | e2 

Szab6 (1989), using "posit ive" reasoning, constructs a sublattice of  ~ ( ~ )  
generated by elements (subspaces) 1 , . . . ,  5. However, this lattice is not an 
ortholattice: it is impossible to define the orthocomplementation on Szab6's 
lattice; this fact can be proved exhaustively. However, we note that con- 
structing the graph associated with the subspaces 1-5 in accordance with 
Section 2 (Figure 5a), we can see that the property lattice generated by this 
graph is isomorphic to the Boolean lattice 2 4 (generated by the graph of  
four disjoint vertices 1, 2, 4, 5) which essentially differs from Szab6's lattice 
(Figure 6a). 

We need an ortholattice possessing the negative logic that we per- 
manently apply (namely the identification of  a property by checking its 
opposite). In order to obtain the ortholattice, we shall take not the sublattice 
of  ~?(~f) as Szab6 (1989) does, but the subortholattice of  the ortholattice 
L(H) built in Section 3. The subortholattice constructed, call it M, is 

t 2 { 2 

o 

g) 

5 

Fig. 5. (a) The graph associated with the collection (5.1). (b) The graph generating the 
ortholattice M. 
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I 

A $ 

Fig. 6. (a) Szab6's model lattice. (b) The property ortholattice M (the vertex q+ corresponds 
to the +1 eigenstate of the permutation operator). Note that the lattice of part (b) is obtained 
from part (a) by deleting elements g, h with adjacent links. 

generated by the considered properties 1, 2 , . . . ,  5 (Figure 5b) which are 
associated with the following elements of  L ( H ) :  

1~--~{11}, 2~--~{13}, 3~--~{q-}, 4~--~{31}, 5~--~{33} 

The lattice M is constructed as the lattice 2 4 generated by elements 1, 
2, 4, 5 with two additional elements 3 and 3 • which are connected with 
other elements as shown on Figure 6b. Due to the presence of these 
additional elements, M is non-13oolean; thus, one cannot define on it the 
usual probabil i ty measure; instead, we introduce some weights. For 
example,  for a singlet state one can have the following collection of weights 
{w,}: 

wl = w5 = 0, w2 = w4 = 1/2, w3 = 1 

Due to nondistributivity 

2 = 2 ^  ( 4 v 3 ) ~  (2^4)  v (2^3)  = 0 v 0 = 0  

The property 1 v 2 corresponds to the observation of S~ 1)= +1 /2  without 
the observation of anything for the second particle. The occurrence of 
S~ 1) = +1 /2  does not mean that 2 occurs, because wi are not probabilities, 
and thus 2 cannot be called an event in the described experimental situation. 

It is only if one "neglects" the element 3 that one obtains probabilities 
corresponding to a Boolean lattice. In order to "neglect" 3, the observer 
considers some other moment  of  time, so that 3 is now in the past and at 
the present moment  only 1, 2, 4, 5 are actual. This corresponds to usual 
preparat ion and measurement  procedures in quantum mechanics. Formally 
this can mean that we have a Hilbert space with a superselection rule 
associated with time. One can say that there are two Hilbert spaces para- 
metrized by time moments  tl and tz so that the performed measurement  
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commutes with the permutation operator at moment t I and with the local 
operators S(~ 1) and S (2) at moment t 2. The Boolean observer prepares the 
system at moment t I and obtains with probabilities 1/2 these or those values 

c,(1) ,~,(2) of  ~,~ , - z  at moment t2. 

6. SUMMARY 

Two-particle quantum systems with spin can be simulated by classical 
automata described by graphs. These graphs are associated with nondistribu- 
tive property lattices of  these quantum systems. We emphasize that to 
nonlocal properties of  a quantum system being in a certain eigenstate of 
the permutation operator there correspond merely some additional vertices 
in the graph which have nothing "nonlocal"  in their nature. This leads to 
the possibility of  violating Bell's inequalities in classical systems described 
by graphs (see Section 4) without breaking relativity theory. 

The subjective interpretation of quantum mechanics of  von Neumann, 
London, and Bauer can be connected with the Boolean nature of  mind 
grasping the non-Boolean nature of the world which results in the projection 
postulate: the wave packet reduction. A simple example of it gives a 
two-particle system with spin. 
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